Module BR **Blade Repair**

BR (70 h)

Aim: The aim of the GWO Blade Repair Module is to enable the participants to support and care for themselves and others working in the wind industry by possessing the necessary knowledge, skills, and ability for blade repair.

PROGRAM: BR Blade Repair

1. Introduction to the training	14. Materials
2. Safety data sheets	14.1 Reinforcement materials
2 1 Safety data sheets	14.2 Matrix materials
2.7 Safety data sheets location	14.2 Adhasiyas
2.2 Safety data sheets location	14.3 AUTIESTVES
2.3 Safety instructions	14.4 Surface coatings
2.4 Hazard labels and symbols	14.5 Chemical handling and application
2.5 Personal protective equipment	14.6 Curing
2. Work instruction	15 Tools and equipment
3.1 The work Instruction (WI)	15.1 Mechanical, electrical and pheumatic principles
3.2 Locate work instruction	15.2 Utilisation of tools and materials
4. Risk assessment	15.3 Calibration
4.1 The risk assessment	15.4 Lamination tools
4.2 Undated rick accossment	15 E Heating blankets
4.2 Opualeu fisk assessment	
5. Secure an area	15.6 Checking electrical tools and equipment
5.1 Locate procedures	15.7 Vibrating tools
5.2 Securing the area	15.8 Electrical safety devices
6 Contamination	15.9 Documentation types
C.1. Characteristics	16. Dhase test
0.1 Characteristics	To. Phase lest
6.2 Work instruction as mitigation	16.1 Phase test
6.3 Avoiding contamination	17. Lamination skills
7. Waste segregation	17.1 Fibre orientation
7 1 Why segregate waste?	17.2 Kinked or bent fibres
7.1 Willy Segregale Waste:	17.2 NIIKEU UI DEIL IIDIES
7.2 Correct waste segregation	17.3 Overlaps
7.3 Waste segregation information	17.4 Dry fibres and air voids
8. Ergonomics	17.5 Mixing ratio
8 1 Classroom	17.6 Calculation of matrix material
8.2 Workshop	17.7 Curing elevated temperatures
	17.9 Acceptaining correct suring
8.3 Bladework	17.8 Ascertaining correct curing
9. Lock out tag out	17.9 Ambient temperature and humidity
9.1 Lock out tag out (LOTO)	17.10 Recording ambient temperature and humidity
10 Personal protective equipment	18 Basic lamination
10.1 Purnoso	18.1 Minimise risks associated with fibre work
10.2 Application	10.2 Fibraglass mate
10.2 Application	18.2 Fibregiass mats
10.3 Limitations	18.3 Fibre orientation and moulding theory
10.4 Task specific	19. Sandwich panel
10.5 Disposal	19.1 Minimise risks associated with composite fibre work
11 Masks and filters	19.2 Sandwich construction
	10.2 Curring of fibro reinforced composite lominate
11.1 Purpose	19.3 Curing of fibre reinforced composite familiate
11.2 Filter categories	19.4 Producing a composite sandwich panel
11.3 Categories and lifetime	19.5 Trailing edge section
11.4 Masks	20. Painting
11 5 Apply filters	20.1 Completion of blade
12 Chamical cafety	21. Plade inspection
12. Chemical safety	21. Blade inspection
12.1 Purpose	21.1 Typical failures
12.2 Transfer procedures	21.2 Reactions to damage categories
12.3 Information about chemicals	21.3 Focused and scaled photographs
12.4 Equipment check	21 4 Tan test
12.5 Drovention and mitigation	21 E Lighting
12.5 Prevention and mugation	
13. Composites and blade construction	21.6 Inspection tools and methods
13.1 Aerodynamics	21.7 Types of damage
13.2 Blade construction	22. Inspecting lightning protection system
13 3 Sandwich nanel	22.1 Surface components
12.4 Plade ophancoments	22.1 Surface components
13.4 Blade enhancements	22.2 visual and conductivity inspection
13.5 Faults, implications and mitigations	22.3 Measure resistance

13.5 Faults, implications and mitigations

ModuleBRBlade Repair

BR (70 h)

Aim: The aim of the GWO Blade Repair Module is to enable the participants to support and care for themselves and others working in the wind industry by possessing the necessary knowledge, skills, and ability for blade repair.

PROGRAM: BR Blade Repair

23. Sanding skills
23.1 Sanding
24. Grinding skills
24.1 Grinding
25. Surface repairs
25.1 Minimise risks associated with composite fibre work
25.2 Filler adhesion
25.3 Reproduce surface profile
25.4 Paint adhesion
25.5 Layer thickness
25.6 Apply paint with a roller
25.7 Layer thickness with wet film
25.8 Record ambient temperature and humidity
25.9 Inspection and documentation
26. Laminate repairs
26.1 Minimise risks associated with composite fibre work
26.2 Safe removal of damaged material
26.3 Identifying fibre direction
26.4 Reinforcement overlaps and matrix adhesion
26.5 Mixing
26.6 Repair layers
26.7 Wetting out fibres using appropriate tools
26.8 Wetting out fibres with matrix material
26.9 Vacuum consolidation
26.10 Curing the repair using heating blankets
26.11 Verifying the curing
26.12 Recording the ambient temperature and humidity
27. Filling and shaping
27.1 Filler
28. Trailing edge repairs
28.1 Minimise risks associated with composite fibre work
28.2 Repair task
28.3 Crack repairs
28.4 Recreating blade profile
28.5 Record amplent to
20 Loading adga rapairs
29. Leduing euge repairs
29.1 Minimise risks associated with composite hore work
29.2 Repair lask 29.3 Loading odgo ropair
29.3 Leading edge repair
20. Sandwich nanel renair
30.1 Minimise risks associated with composite fibre work
30.2 Renair task
30.3 Repair inner and outer laminate
30.4 Replacement core
30.5 Inspection and documentation
31 Bond line renairs
31.1 Debonding
31.2 Injection of adhesive
31.3 Injecting material in the trailing edge
32. Summary and final test
32.1 Summary

32.2 Final test

33. Training review33.1 Training review33.2 Feedback session

BR Module (Blade Repair)

Duration: 70 hours (9 days) **BR Program :** Sections 1 to 33 **Maximum students:** 12 people per Edition.

Certificate validity:

Permanent. This assumes that the participants are actively working with composite inspection and repair.

Headquarter:

Andosilla (Navarra) • Spain	PREMIUM
Phone: +34 664 681 385 • navarra@totalhse.com	
Other centers in Spain:	
Las Palmas (Canary Islands) • Spain SEPROM Phone: +34 902 008 482 • canarias@totalhse.com	
Redondela (Galicia) • Spain Verticalia Formación Phone: +34 986 401 472 • galicia@totalhse.com	SELECT
Other centers:	
Hatzor Haglilit • Israel	SELECT
Phone: +972 4 632 2095 • israel@totalhse.com	
San José • Costa Rica Desarrollos Floruma Phone: +506 2282-7468 • sanjose@totalhse.com	SELECT
Santiago de Chile • Chile	SELECT

ENACTRAR Phone: +56 9 5819 5060 • chile@totalhse.com

www.totalhse.com